About 134,000,000 results
Open links in new tab
  1. Q-Learning 精解:从数学原理到代码实现的深度探索 | ApFramework

    Jun 17, 2025 · 本文系统剖析Q-Learning算法的核心机制与理论基础,通过冰冻湖面环境的实例演示,从贝尔曼方程到代码实现,为读者构建强化学习的完整知识体系,助力AI学习之旅。

  2. Q-learning - Wikipedia

    Q-learning is a reinforcement learning algorithm that trains an agent to assign values to its possible actions based on its current state, without requiring a model of the environment (model-free).

  3. 深入解析强化学习之Q-Learning全攻略:理论基础、算法流程与应用实 …

    通过这些步骤,Q-Learning算法能够学习在给定状态下采取哪些动作能够最大化长期累积奖励,而无需了解环境的具体动态。

  4. RL-01:Q-Learning算法理解及实例应用 - CSDN博客

    Jan 1, 2026 · Q-Learning是强化学习领域经典的无模型(Model-Free)时序差分(Temporal Difference,TD)学习算法,由Chris Watkins于1989年提出。 它的核心目标是学习动作价值函 …

  5. Q-Learning 简介 - Hugging Face 深度强化学习课程 - Hugging Face 文档

    **Q-Learning 是我们用来训练 Q 函数的算法**,它是一个**动作价值函数**,用于确定处于特定状态并在该状态下采取特定动作的价值。

  6. 深入浅出:Q-learning——强化学习的经典算法-百度开发者中心

    Feb 17, 2024 · Q-learning是一种重要的强化学习算法,它通过构建一个Q表来学习状态-行为映射,实现智能体的决策。 本文将介绍Q-learning的基本原理、实现步骤以及应用场景,旨在帮助读者深入理解 …

  7. 强化学习详解:理论基础与核心算法解析 - 简书

    Sep 26, 2024 · 本文详细介绍了强化学习的基础知识和基本算法,包括动态规划、蒙特卡洛方法和时序差分学习,解析了其核心概念、算法步骤及实现细节。 关注作者,复旦AI博士,分享AI领域全维度知 …

  8. A Gentle Introduction to Q-Learning

    Aug 5, 2025 · One of the most widely used algorithms in reinforcement learning is Q-learning, which examines how an agent learns the value of actions in different states without requiring a complete …

  9. Introducing Q-Learning - Hugging Face Deep RL Course

    Q-Learning is the algorithm we use to train our Q-function, an action-value function that determines the value of being at a particular state and taking a specific action at that state.

  10. What is q learning? - California Learning Resource Network

    Jul 2, 2025 · Q-learning, a cornerstone of reinforcement learning (RL), provides a model-free approach to learning optimal control policies in Markov Decision Processes (MDPs).